翻訳と辞書 |
surface micromachining : ウィキペディア英語版 | surface micromachining Unlike Bulk micromachining, where a silicon substrate (wafer) is selectively etched to produce structures, surface micromachining builds microstructures by deposition and etching of different structural layers on top of the substrate. Generally ''polysilicon'' is commonly used as one of the layers and ''silicon dioxide'' is used as a ''sacrificial layer'' which is removed or etched out to create the necessary void in the thickness direction. Added layers are generally very thin with their size varying from 2-5 Micro metres. The main advantage of this machining process is the possibility of realizing monolithic microsystems in which the electronic and the mechanical components(functions) are built in on the same substrate. The surface micromachined components are smaller compared to their counterparts, the bulk micromachined ones. As the structures are built on top of the substrate and not inside it, the substrate's properties are not as important as in bulk micromachining, and the expensive silicon wafers can be replaced by cheaper substrates, such as glass or plastic. The size of the substrates can also be much larger than a silicon wafer, and surface micromachining is used to produce TFTs on large area glass substrates for flat panel displays. This technology can also be used for the manufacture of thin film solar cells, which can be deposited on glass, but also on PET substrates or other non-rigid materials. ==Fabrication Process== Micromachining starts with a silicon wafer or other substrate and grows layers on top. These layers are selectively etched by photolithography and either a wet etch involving an acid or a dry etch involving an ionized gas, or plasma. Dry etching can combine chemical etching with physical etching, or ion bombardment of the material. Surface micromachining can involve as many layers as is needed with a different mask (producing a different pattern) on each layer. Modern integrated circuit fabrication uses this technique and can use dozens of layers, approaching 100. Micromachining is a younger technology and usually uses no more than 5 or 6 layers. Surface micromachining uses developed technology (although sometimes not enough for demanding applications)which is very repeatable for volume production.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「surface micromachining」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|